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The intrinsic XFEM for two-fluid flows
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SUMMARY

In two-fluid flows, jumps and/or kinks along the interfaces are present in the resulting velocity and
pressure fields. Standard methods require mesh manipulations with the aim that either element edges align
with the interfaces or that the mesh is sufficiently refined near the interfaces. In contrast, enriched methods,
such as the extended finite element method (XFEM), enable the representation of arbitrary jumps and
kinks inside elements. Thereby, optimal convergence can be achieved for two-fluid flows with meshes that
remain fixed throughout the simulation. In the intrinsic XFEM, in contrast to other enriched methods, no
more unknowns are present in the approximation than in a standard finite element approximation. In this
work, the intrinsic XFEM is employed for the simulation of incompressible two-fluid flows. Numerical
results are shown for a number of test cases and prove the success of the method. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The interaction of different fluids is frequently observed in the real world. For example, wave,
bubble, and drop dynamics are applications of high relevance in engineering sciences. Also, free
surface flows can be interpreted as two-phase flows where one fluid has negligible density and
viscosity. The numerical simulation of two-fluid flows has a long tradition and remains to be an
active research field, see e.g. [1–6]. In incompressible two-fluid flows, the velocity and pressure
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fields and/or their gradients are discontinuous along the interfaces between the fluids. Standard
numerical methods, such as the finite element method (FEM) [7, 8], rely on the approximation
properties of polynomials [9, 10]. Therefore, they perform poorly for the approximation of jumps
and kinks within elements. As a consequence, most applications of the classical FEM for two-fluid
flows rely on an appropriate manipulation of the mesh throughout the simulation. The aim is to
keep the interfaces between the fluids aligned with element edges or to refine the mesh near the
interfaces.

In interface tracking methods [2, 3], the initial mesh aligns with the interface and follows the
movement of the interface throughout the simulation. However, large deformations and topological
changes in the interface position may render the mesh-update difficult or even impossible. In
interface-capturing methods [4, 6, 11–13], the interface is described implicitly on the mesh. The
level-set method [14] and the volume of fluid method [4] are frequently used for this purpose.
The mesh in the vicinity of the interface is often refined in order to capture the discontinuous
behavior of the state variables near the interface. Otherwise, for interfaces going through elements,
the accuracy of the classical FEM is poor, which is for example manifested by spurious velocities
near the interface, see e.g. [15–17]. The optimal rate of convergence related to the element type
employed can no longer be achieved.

Numerical methods for two-fluid flows, which are able to obtain optimal convergence on a fixed
mesh throughout the simulation, have been proposed recently in the context of the extended finite
element method (XFEM). In the XFEM, see e.g. [18, 19], the approximation space is enriched
and, as a consequence, able to represent a priori known solution properties such as jumps and
kinks exactly in element interiors. The XFEM has first been proposed in the context of an extrinsic
enrichment of the approximation, i.e. more shape functions and unknowns are used when compared
with a classical finite element approximation. This type of XFEM is used by Belytschko [20]
and Chessa [21] and Kölke [22] for the simulation of two-fluid flows. A different version of the
XFEM has been proposed by Fries and Belytschko in [23]. The method is called ‘intrinsic XFEM’
and enables the use of approximations of the same form than classical FEM approximations. The
method is able to reproduce inner-element jumps and kinks (or other solution characteristics) by
using intrinsically enriched shape functions; no more unknowns are introduced in this method. In
this work, the intrinsic XFEM is applied to two-fluid flows.

Another method for arbitrary discontinuities is the generalized finite element method (GFEM)
by Stroubolis et al. [24, 25]. It is closely related to the XFEM and also based on the partition
of unity method (PUM) [9, 26] as the underlying concept. An interesting method for arbitrary
discontinuities that is not based on the PUM-concept is given by Hansbo and Hansbo [27], though
it can be shown to have the same basis functions as the XFEM [28]. Meshfree methods have
been successfully used for arbitrary discontinuities, see e.g. the overviews in [29–32], and another
approach may be found in [33].

In the intrinsic XFEM, the approximation space is built by standard finite element shape functions
in those parts of the domain where a polynomial approximation space is adequate. However, in
the vicinity of the interfaces between the two fluids, special shape functions are employed that are
able to capture the discontinuities in the velocity and pressure fields. These intrinsically enriched
shape functions are constructed by means of the moving least-squares (MLS) method [34, 35].
This method involves an intrinsic basis vector and the enrichment in the proposed method takes
place on the level of this intrinsic basis. The set of MLS functions (used as shape functions near
discontinuities) is obtained by minimizing a weighted least-squares error functional. Therefore,
locally defined weight functions around each node are involved, and a special mesh-based definition
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of the weight functions is chosen in the intrinsic XFEM. As a result, the enriched MLS shape
functions are mesh-based, which is in contrast to standard applications of the MLS in the context
of meshfree methods [30, 31, 36].

Important properties of the intrinsic XFEM are summarized as follows [23]: The enrichment is
realized locally and intrinsically without introducing additional unknowns. The same enrichment
functions than used in the standard XFEM [18, 19] may be employed. The local enrichment is
realized without introducing problems in blending elements which are between enriched and non-
enriched parts of the domain. These problems are well-known in the standard XFEM, see [37],
although this problem has been recently solved in [38]. In the intrinsic XFEM, the increased amount
of computational work lies in the evaluation of the MLS shape functions. More integration points
than in the classical FEM are needed and the evaluation of the enriched MLS shape functions is
more cumbersome than for the classical FEM.

An outline of the paper is as follows: The governing equations of two-fluid flows are given in
Section 2. Discontinuities in the velocity and pressure fields at the interfaces are discussed, and the
definition of the interfaces by means of the level-set method is described. The construction of the
approximation space used in the intrinsic XFEM is worked out in Section 3. The procedure falls
into three steps: Decomposition of the domain based on the interface positions into overlapping
subdomains (Section 3.1), construction of the finite element or MLS shape functions in the indi-
vidual subregions (Section 3.2) and coupling such that one set of shape functions is obtained in
the whole domain (Section 3.3). The discretization is discussed in Section 4. The discretized weak
form is given (Section 4.1), and time integration with simple time-stepping schemes is described
(Section 4.2). Special issues related to the intrinsic XFEM such as imposition of boundary condi-
tions and integration of the weak form are mentioned in Sections 4.3 and 4.4. The treatment of the
moving interfaces in the context of the level-set method is worked out in Section 4.5. Section 4.6
shows how surface tension is considered in this work. Numerical results are given in Section 5 for
several examples of two-fluid flows. For two simplified situations, it is shown that an analytical
solution including kinks or jumps can be represented exactly in the intrinsic XFEM, see Section
5.1. Other test cases such as sloshing in a tank, a collapsing water column, and bubble flows
at different Eötvös numbers are given in Sections 5.2–5.4. The paper ends in Section 6 with a
summary and conclusions.

2. INCOMPRESSIBLE TWO-FLUID FLOWS

2.1. Governing equations

The geometrical situation is as follows: Consider a d-dimensional domain�⊂Rd with the boundary
�=��. The boundary � is decomposed into the Dirichlet and Neumann boundary, �u and �h,
respectively, such that �u∪�h=� and �u∩�h=∅. The normal vector on � is denoted by n.
The domain � contains two different, immiscible incompressible Newtonian fluids in �1 and �2,
respectively, so that �=�1∪�2. Throughout this work, � is considered a time-independent closed
container, whereas �1(t) and �2(t) change in time. The (moving) interface between the two fluids
is denoted by �d. The normal vector on �d is called n̂ and points from �1 to �2. See Figure 1
for a sketch of the situation.

The governing equations are now given in strong form, see e.g. [5, 11, 16]. Let u(x, t) be
the velocities and p(x, t) the pressure; �i and �i with i=(1,2) are the density and dynamic
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Figure 1. The two fluids in �1 and �2, separated by the interface �d.

viscosity of the two fluids, respectively; f are volumetric forces such as gravity. The fluids inside
�i ×(0, tend), i=(1,2), are modeled by the instationary, incompressible Navier–Stokes equations
in velocity–pressure formulation

�i

(
�u
�t

+u·∇u
)

−∇ ·r=�i f (1)

∇ ·u=0 (2)

The stress tensor r of the Newtonian fluids is given as

r(u, p)=−pI+2�ie(u) with e(u)= 1
2 (∇u+(∇u)T) (3)

where I is the identity tensor. Dirichlet and Neumann boundary conditions on the outer boundary
of � are

u= û on �u×(0, tend) (4)

r·n= ĥ on �h×(0, tend) (5)

where û and ĥ are prescribed velocities and stresses. The following conditions typically apply at
the interface:

[u]�d =0 on �d×(0, tend) (6)

−[r]�d ·n̂=�·�· n̂ on �d×(0, tend) (7)
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Here, [ f ]�d is the jump of property f across the interface �d, � is the surface tension coefficient
(material parameter) and � is the curvature of �d. As an initial condition, a divergence-free velocity
field û0 is specified over �,

u(x,0)= û0(x) in � at t=0 (8)

2.2. Discontinuous state variables at the interface

The situation at the interface �d is considered in more detail. The density and viscosity fields

�(x, t)=
{

�1 ∀x∈�1(t),

�2 ∀x∈�2(t),
�(x, t)=

{
�1 ∀x∈�1(t)

�2 ∀x∈�2(t)
(9)

change discontinuously at �d. As a consequence, also the state variables such as the velocities
and pressure fields involve discontinuities at the interface. Discontinuities may be classified into
strong and weak, see Figure 2. In the case of strong discontinuities, a jump and a change in the
gradient are present in the field. For weak discontinuities there is only a kink in the field, i.e. the
field is continuous with a discontinuous gradient.

The interface condition (6) states that the velocities are continuous across �d, or, in other words,
that the jump in the velocity field is zero. The second interface condition, (7), states that the surface
tension balances the jump of the normal stress at the interface. As a consequence of (1)–(2) and
(6)–(7), the velocity fields u(x, t) are weakly discontinuous across �d, whereas the pressure field
p(x, t) has a strong discontinuity at the interface. In the case that no surface tension is considered,
�=0, the jump in the pressure field vanishes and p(x, t) has a kink at �d. Applications with and
without surface tension are considered in this work.

It is relevant to consider the presence of strong and weak discontinuities in the state variables
when simulating two-fluid flows. This has been realized by many different approaches: In interface
tracking methods, weak discontinuities are accounted for by the standard FEM automatically.
The strong discontinuity in the pressure field can be realized by using completely decoupled

Figure 2. Examples of (a) a strong and (b) a weak discontinuity.
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meshes for the two-fluid regions. It is again noted that these methods do not, in general, allow
topological changes of the two-fluid domains. In interface-capturing methods, the strong and weak
discontinuities may be considered by local h-refinement in the vicinity of the interface. Also,
under-integration in the elements cut by the interface is often applied. For interface-capturing
methods, especially strong discontinuities often pose a serious problem for the accuracy of the
overall simulation. It is, therefore, our belief that enriched methods such as the XFEM are ideally
suited for two-fluid flow simulations as they consider both, strong and weak discontinuities within
elements, by special enrichments of the approximation space.

2.3. Description of the interfaces by the level-set method

The level-set method [14] is used for the description of interfaces �± =�d between �− =�1 and
�+ =�2. It is a numerical technique for the implicit tracking of moving interfaces, and has been
applied in the context of two-fluid flows e.g. in [6, 13, 20, 22, 39]. A level-set function �(x) has
the properties that it is positive in �+, negative in �−, and zero on the interface. In this work, the
signed-distance function [14] is used as a particular level-set function,

�(x)=± min
x�∈�± ‖x−x�‖ ∀x∈� (10)

where the sign is different on the two sides of the interface and ‖·‖ denotes the Euclidean norm, see
Figure 3. It follows directly from (10) that the zero-level of this scalar function is a representation
of the discontinuity, i.e.

�(x)=0 ∀x∈�± (11)

Figure 3. Two-fluid domain � with level-set function �(x). The zero-level of �(x) describes
the interface position between �+ and �−.
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In what follows, we use the notation of �±, �−, and �+ rather than �d, �1 and �2 (as in Section
2.1) due to its more intuitive linkage to the level-set function used for the partitioning of the
domain.

For discretized domains, the values of the level-set function are typically stored at nodes �i =
�(xi ), and the level-set function is interpolated by

�h(x)=∑
i∈I

NFEM
i (x)�i (12)

using standard FE shape functions NFEM
i as interpolation functions. I is the set of all nodes in �.

The representation of the discontinuity as the zero-level of �h(x) is only an approximation of
the real position, which improves with mesh refinement. In this work we restrict ourselves to
two-dimensional applications. Bi-linear interpolation functions are used in (12) for all elements
that are not cut by the interface. In cut elements, however, we subdivide the quadrilateral element
into two triangulars and employ linear interpolation functions. Thereby, the zero-level of �h(x),
i.e. the representation of the interface, remains piecewise linear.

It is noted that the level-set method is ideally suited for the description of interfaces in closed
domains, i.e. without inflow and outflow boundaries, as considered throughout this work. The
situation may become problematic in special situations where inflow boundaries are present and—
as an example—bubbles (�−) enter the surrounding fluid (�+).

3. THE INTRINSIC XFEM FOR TWO-FLUID FLOWS

The intrinsic XFEM falls into three steps. In the first step the domain is decomposed into subdo-
mains that overlap in one element layer. The second step is the construction of shape functions
for all nodes of each subdomain. They build partition of unities (PUs) with certain properties.
Standard finite element or special enriched MLS functions are employed here. In the third step, the
shape functions in the overlapping element layers are coupled such that only one shape function
per node results.

3.1. Decomposition of the domain

It is assumed that the domain �∈Rd is subdivided into nel elements; the set of all elements is
labeled Q={1, . . . ,nel}. The element area of element k is �el

k , k∈Q. The set of m element nodes
corresponding to each element is denoted by I elk ∈(N+)m , k∈Q. The union of all element nodes
is the nodal set I =⋃i∈Q I eli ={1, . . . ,nno}, where nno is the total number of nodes in the entire
domain �.

The set of elements that are cut by the interface �± between �+ and �− is determined by
means of the level-set function �(x) as

Qcut=
{
k∈Q :min

i∈I elk
(�(xi )) ·max

i∈I elk
(�(xi ))<0

}
(13)

The union of the element nodes of elements in Qcut composes the nodal subset Icut, see Figure 4(a),

Icut= ⋃
i∈Qcut

I eli (14)
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Figure 4. (a) Elements in Qcut and nodal set Icut, (b) elements in Q1, Q2, Q3 based on the fact whether
all, none, or some of their element nodes are in Icut.

Based on Icut, the set of all elements Q is partitioned into three disjoint element sets. The sets
Q1, Q2, Q3 contain elements with all, none, or some of their element nodes belonging to Icut,
respectively,

Q1={k∈Q : I elk ⊆ Icut} (15)

Q2={k∈Q : I elk ∩ Icut=∅} (16)

Q3={k∈Q :k /∈Q1 and k /∈Q2} (17)

See Figure 4(b) for a sketch of the situation. It is noted that some elements have all their element
nodes in Icut but are not cut themselves, so that Qcut⊆Q1. This can be seen by comparing Qcut
and Q1 in Figure 4(a) and (b).

Furthermore, we define the element sets QFEM and QMLS as

QFEM=Q2∪Q3 (18)

QMLS=Q1∪Q3 (19)

Obviously, QMLS∩QFEM=Q3. The union of the element areas of elements in QFEM composes the
subdomain �FEM, and IFEM is the set of all element nodes of the elements in QFEM, see Figure 5(a).
Analogously, �MLS and IMLS result from QMLS, see Figure 5(b):

�FEM= ⋃
i∈QFEM

�el
i , IFEM= ⋃

i∈QFEM

I eli (20)

�MLS= ⋃
i∈QMLS

�el
i , IMLS= ⋃

i∈QMLS

I eli (21)
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Figure 5. (a) Subdomain �FEM with nodes IFEM, (b) subdomain �MLS with nodes IMLS.

The overlap of the domains �FEM and �MLS is labeled transition area �trans=�FEM\�MLS, it
contains the elements in Q3. The nodes that appear in IFEM and IMLS are called Itrans= IFEM\ IMLS;
these are the element nodes of elements in the transition area.

3.2. Construction of PUs in each subdomain

In each subdomain �FEM and �MLS, a set of shape functions {NFEM
i } and {NMLS

i } is constructed for
each of the nodes in IFEM and IMLS, respectively. Standard bi-linear finite element shape functions
are used in �FEM. It is noted that these shape functions are not constructed in cut elements, see
Figure 5(a), because they are not suited for capturing the strong or weak discontinuity across the
interface. In �MLS, which is in the vicinity of the interface, see Figure 5(b), special enriched
MLS functions are constructed. The enrichment enables the shape functions to represent jumps
and kinks in the solution of a field variable.

3.2.1. Moving least-squares (MLS) method. MLS shape functions have been discussed in a number
of publications [31, 35, 40], we briefly define them as follows. MLS functions NMLS

i are constructed
in �MLS for the nodes in IMLS. They are defined as

NMLS
i (x)=pT(x)[M(x)]−1wi (x)p(xi ) (22)

with M(x)= ∑
i∈IMLS

wi (x)p(xi )pT(xi ) (23)

The functions wi (x) are called MLS weight functions and p(x) is the intrinsic basis consisting of
k components. The set of MLS functions {NMLS

i (x)} builds a PU over the domain �MLS, i.e. for
any function in the basis p(x):∑

i∈IMLS

NMLS
i (x)p(xi )=p(x), x∈�MLS (24)
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We use the term PU in the generalized sense of (24), the original expression ‘PU’ only refers to
the property that

∑
i N

MLS
i (x)=1.

It is important to note that the basis vector chosen sets up requirements for the weight functions.
To maintain the regularity of the matrices M(x), it is necessary that the weight functions wi (x) in
the MLS procedure, see Equations (22) and (23), overlap sufficiently at any point x∈�MLS. More
precisely, the relevant condition is that every point x∈�MLS must lie in the area of influence of at
least k=dim(M)=dim(p) nodes [41], hence

card{x|wi (x) �=0 ∀i ∈ IMLS}�k=dim(M) ∀x∈�MLS (25)

For the evaluation of MLS shape functions, which are defined through Equations (22) and (23),
the weight functions wi (x) and the basis vector p(x) have to be specified.

3.2.2. Special weight functions. The weight functions must be constructed so as to ensure a
sufficient overlap such that the MLS moment matrices are invertible, see Equation (25). They
also determine some important properties of the resulting shape functions. The support and the
continuity of the shape functions are identical to the weight functions, that is, ∀i ∈ IMLS: NMLS

i =0
where wi =0, and NMLS

i ∈Cs(�) if wi ∈Cs(�) (assuming that p(x) is sufficiently smooth). For
the new weight functions, the supports consist in the elements contiguous to a node and their
neighboring elements. This is shown in Figure 6 for quadrilateral elements.

The following definition of the weight functions has been found useful, see [23]: Let I �
� be the

nodes in IMLS which belong to the same element(s) as node �∈ IMLS. This set of nodes is called
neighboring nodes and can be described as

I �
� ={i ∈ IMLS\� :(i,�)⊂ I elk , k∈Q} (26)

The weight function of node � in the subdomain �MLS is then defined by

w�(x)=2 ·NFEM
� (x)+ ∑

i∈I �
�

NFEM
i (x) (27)

Figure 6. The weight function corresponding to the center node has a support which includes the
neighboring elements of that node (dark-gray area) and the next-neighboring elements (light-gray area).
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Figure 7. The proposed weight function of node � in a structured and unstructured element situation.

where NFEM
i (x) is a standard finite element shape function. This weight function is depicted in

Figure 7 for a node in a structured and unstructured quadrilateral element setting. One may use
the new weight functions (27) for either triangular and quadrilateral elements. However, in this
work, without loss of generality, only quadrilateral elements with corresponding bi-linear shape
functions are considered.

3.2.3. Basis functions for discontinuities. For smooth solutions, the basis vector p(x) of the MLS
often consists of monomials depending on the desired order of accuracy. For example, pT(x)=
[1, x, x2] serves as a quadratic basis in one dimension, pT(x)=[1, x, y] as a linear basis in two
dimensions. The approximation properties of these bases are similar to those of the corresponding
finite element shape functions. However, in contrast to finite element shape functions, the basis
in the MLS method can be easily enriched by any desirable terms which enable the resulting
MLS shape functions to improve their approximation properties in the presence of non-smooth
solutions.

For two-fluid flows, as discussed in Section 2.2, strong and weak discontinuities are present
across the interface of the two fluids. Then, the following basis-vectors, depending on the level-set
function �(x), are suited for the construction of the MLS shape functions. For weak discontinuities
we define

pT(x)=[1, x, y,abs(�(x))] (28)

and for strong discontinuities one may choose

pT(x)=[1, x, y,abs(�(x)),sign(�(x))] (29)

However, we found that instead of using (29) for strong discontinuities, it is more efficient (and
intuitive) to use a standard basis

pT(x)=[1, x, y] (30)

and modify the weight functions wi (x) according to the visibility method [42]. In this method,
the interface is considered opaque, and w�(x) is set to zero in those part of the support which is
not visible from the node x�. Shortly, the support of the weight function is truncated on the other
side of the discontinuity, see Figure 8. This modification of the support of the weight functions is
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interface

Figure 8. The truncated supports of the weight functions according to the visibility method
are shown for two selected nodes.

a standard treatment of a strong discontinuity in the field of meshfree methods [40, 42], and has
also been investigated in a mesh-based context by Fries and Belytschko in [43].

The truncated weight function according to the visibility method can be expressed as

w�
�(x)=

{
w�(x) for x visible from x�

0 instead
(31)

where w�(x) is defined in (27). The fact whether x is visible from x� can be based on the sign of
the level-set function, see Section 2.3. The point x is visible from x� if

�(x) ·�(x�)>0 (32)

As a result of the truncation, the resulting shape functions on each side of the interface are fully
decoupled as desired for a strong discontinuity.

3.3. Coupling the PUs

Different sets of shape functions are individually defined over the overlapping subdomains �FEM
and �MLS with respect to the nodal sets IFEM and IMLS, respectively. The subdomains �FEM and
�MLS overlap in the transition area �trans. In elements that are in �FEM\�trans, only finite element
shape functions are evaluated and the final shape function Ni (x) used in the approximation follows
immediately as

Ni (x)=NFEM
i (x) ∀x∈�FEM\�trans ∀i ∈ IFEM (33)

Analogously, for elements in �MLS\�trans, only MLS shape functions are present, so that

Ni (x)=NMLS
i (x) ∀x∈�MLS\�trans ∀i ∈ IMLS (34)

In the transition area �trans, for each node in Itrans= IFEM∩ IMLS, a standard finite element and
MLS function has been evaluated. In order to obtain one shape function, a coupling is required.
A ramp function is used for this purpose which is defined as

R(x)= ∑
i∈Icut

NFEM
i (x) (35)
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It may be seen in Figure 9 that R(x)=1 in �MLS\�trans, and R(x)=0 in �FEM\�trans. It varies
continuously between 0 and 1 in �trans. Then, the resulting shape function Ni (x) is defined as

Ni (x)=NFEM
i (x) ·[1−R(x)]+NMLS

i (x) ·R(x) ∀x∈�trans ∀i ∈ Itrans (36)

An example of the resulting shape function Ni (x) is depicted in Figure 10.

Figure 9. The ramp function R(x) based on Icut.

Figure 10. Shape functions of a particular node for the case of a (a) weak
discontinuity and (b) strong discontinuity.
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4. DISCRETIZATION

4.1. Governing equations in weak form

In Section 2.1, the strong form of the incompressible Navies–Stokes equations and the definitions
of the boundary and initial conditions are given. Following [44–46], the streamline-upwind Petrov–
Galerkin (SUPG) and pressure-stabilizing Petrov–Galerkin (PSPG) formulation of the weak form
is considered here. The following test and trial spaces, Sh and Vh , are used for the velocities u
and pressure p

Sh
u={uh |uh ∈(H1h)d ,uh = ûh on �u} (37)

Vh
u={wh |wh ∈(H1h)d ,wh =0 on �u} (38)

Sh
p =Vh

p ={qh |qh ∈H1h} (39)

where H1h ⊆H1 is a finite dimensional Hilbert space consisting of the shape functions {Ni }
defined in the previous section; either abs- and/or sign-enrichment is used for the construction
of the velocity and pressure shape functions. The space H1 is the set of functions which are,
together with their first derivatives, square-integrable in �. The SUPG/PSPG-stabilized discretized
weak form may then be formulated as [44]: Find uh ∈Sh

u and ph ∈Sh
p such that ∀wh ∈Vh

u and

∀qh ∈Vh
p, ∫

�
wh ·�i

(
�uh

�t
+uh ·∇uh

)
d�+

∫
�
e(wh) :r(uh, ph)d� (40)

−
∫

�h

wh ·ĥd�+
∫

�
qh∇ ·uh d�+ ∑

j∈Q

∫
�el

j

� j

(
uh ·∇wh+ 1

�i
∇qh

)
(41)

·
[
�i

(
�uh

�t
+uh ·∇uh

)
−∇ ·r

(
uh, ph

)]
d� (42)

=
∫

�
�iw

h ·fd�+
∫

�±
��wh ·n̂d� (43)

with i=(1,2), and r and e are defined in Equation (3). The stabilization terms are found in
Equations (41) and (42) after the summation symbol

∑
j∈Q. These terms stabilize oscillations in

advection dominated regions and enable equal-order interpolations of the velocities and pressures by
circumventing the Babuška–Brezzi condition [47, 48]. The stabilization parameters � j are defined
as [49]

� j =
⎡
⎣( 2

�t

)2

+
(
2‖u‖
h j

)2

+
(
4�i
h2j

)2
⎤
⎦

−1/2

(44)

where h j is computed elementwise as [50]
h j =

√
2·Ael

i /hdiag (45)
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with Ael
j being the element area and hdiag being the larger diagonal distance between the nodes of

the quadrilateral element [50].
4.2. Time integration

Time integration is performed using the Crank–Nicholson scheme, see e.g. [51],
�uh

�t
= uhn+1−uhn

�t
, uh =	uhn+1+(1−	)uhn, 	= 1

2
(46)

The velocities uhn are related to the previous time step. As there is no time derivative in the
continuity equation (2), the term

∫
� qh∇ ·uh d� becomes directly

∫
� qh∇ ·uhn+1 d�. The pressure

is computed fully implicitly [52], i.e. ph in (40)–(43) is directly replaced by phn+1.
In the XFEM, fixed meshes are often used throughout the simulation, so that the mesh velocity is

naturally zero. However, the enrichment of the approximation depends upon the interface position
which moves in time. That is, the enriched shape functions are time-dependent and a standard
time-stepping scheme, e.g. Equation (46), does not take this into account. This issue is worked
out in [53]. There, it is shown that space–time finite elements are a natural choice for the XFEM,
however, time-stepping methods may also be used as a simplification. In [53], the situation is
analyzed for time derivatives of functions that involve strong discontinuities. For standard two-fluid
flows, it is noted that strong discontinuities are present only in the pressure field and that there is
no time derivative of the pressure.

We found that time derivatives of weakly discontinuous fields (such as the velocity fields in
two-fluid flows) can, in fact, be discretized with very satisfactory results by standard time-stepping
schemes. Therefore, the convergence behavior in time was analyzed for 	=1 (Euler backwards)
and 	=0.5 (Crank–Nicholson) in Equation (46). It was found that the convergence rate was clearly
improved for 	=0.5 compared with first order convergence for 	=1. That is, although a slight
inconsistency in the time-discretization is present when using time stepping in the XFEM context,
the convergence in time in incompressible two-fluid problems is still close to optimal for 	=0.5.
Other examples where time-stepping schemes are realized for instationary problems in the frame
of the XFEM are given e.g. in [20, 54–57].
4.3. Imposing essential boundary conditions

The construction of a set of shape functions {Ni (x)}, which is used for the approximations of
the velocities and pressure, is discussed in Section 3. Locally, enriched MLS functions are used.
These shape functions have a larger support when compared with standard finite element shape
functions. Furthermore, MLS functions do in general not have the Kronecker-
 property, i.e.

NMLS
i (x j ) �=
i j (47)

These two aspects—the increased support size and the absence of the Kronecker-
 property—have
important consequences for the imposition of essential boundary conditions. These aspects are
well-known in the context of meshfree methods. An overview of different techniques to apply
boundary conditions in this situation is given in [30, 31].

For the coupled shape functions Ni (x), which are used as test and trial functions, see Section 3,
it may be shown that

Ni (x j ) �=
i j ∀i ∈ IMLS ∀ j ∈ Icut (48)
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where IMLS and Icut are defined in Section 3.1. In words, the shape functions of the nodes in IMLS
do not have the Kronecker-
 property at the nodes in Icut.

Assume that node k is in Icut and located on the Dirichlet boundary �u. The velocity component
û(xk) shall be prescribed. Then, the matrix line corresponding to u at node k is replaced by

[. . . ,Nk−1(xk),Nk(xk),Nk+1(xk), . . .] (49)

instead of only

[. . . ,0,1,0, . . .] (50)

which would be the case for shape functions having the Kronecker-
 property (e.g. standard finite
element shape functions).

Furthermore, it is noted that due to the increased support size, a particular node in IMLS
may have a corresponding shape function Ni (x), which is non-zero along the Dirichlet boundary
although this node is inside the domain (i.e. not on the Dirichlet boundary itself). This contradicts
the requirements for the test space Vh

u in (38) and must be compensated by an evaluation of
the boundary term along the Dirichlet boundary. The boundary terms are present due to the use
of the divergence theorem in order to avoid second order terms,∫

�
wh∇ ·rd�=

∫
�
e(wh) :rd�−

∫
�
wh ·r·nd� (51)

The boundary � falls into the Dirichlet and Neumann boundary �u and �h, see Section 2.1,
therefore, ∫

�
wh ·r·nd�=

∫
�u

wh ·r·nd�+
∫

�h

wh ·ĥd� (52)

The first term on the right-hand side vanishes for shape functions that fulfill (38). This, however,
is not true for the shape functions defined in Section 3. Therefore, this term needs to be evaluated
and influences the system matrix (instead of the Neumann boundary term which influences the
right-hand side). It is noted that the integration has only to be realized in the vicinity of an interface
cutting the Dirichlet boundary, more precisely in �u\��MLS. The additional costs of the evaluation
are negligible.

4.4. Integration

In elements not cut by the interface �±, the proposed shape functions of the intrinsic XFEM are
sufficiently smooth such that standard Gauss integration is suitable. However, in cut elements,
the shape functions have jumps or kinks along the interface depending on the enrichment, see
Section 3.2.3. This must be considered adequately which is achieved by dividing the elements
into integration cells as shown in Figure 11; similar approaches are discussed in [18, 19, 58]. The
partitioning depends on the interpolation of the level-set function �(x), as discussed in Section 2.3.
Here, each cut quadrilateral element is subdivided into two triangulars. In each triangular, linear
interpolation functions are employed. Then, the zero-level of the level-set functions, which defines
the position of the interface, is piecewise linear. The triangulars are further subdivided into inte-
gration cells depending on the interface situation. In each integration cell, standard Gauss points
are placed, see Figure 11.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:437–471
DOI: 10.1002/fld



THE INTRINSIC XFEM FOR TWO-FLUID FLOWS 453

face

inter

Figure 11. Dividing a cut element into integration domains for standard Gauss integration.

4.5. Moving interfaces in the level-set method

The level-set method is used for the implicit description of the moving interfaces between the two
fluids, see Section 2.3. In each time step, the level-set values are advected with the velocity field
of the fluid. Therefore, the scalar advection equation

��

�t
+u·∇�=0 (53)

is solved in the domain, where u are the fluid velocities. In the test cases presented in this work,
no inflow and outflow regions are present, that is, the fluids are moving in a closed domain. Then,
no Dirichlet boundary conditions are required for the advection equation. The initial condition is

�(x,0)= �̂0(x) in � at t=0 (54)

The following test and trial spaces are used:

Sh
� =Vh

� ={�h |�h ∈H1h} (55)

and standard bi-linear shape functions are used everywhere in the domain �. This is justified
due to the fact that the level-set function is smooth everywhere in �. The SUPG-stabilized and
discretized weak form may be stated as: Find �h ∈Sh

� such that ∀�h ∈Vh
�,∫

�
(�h+�uh ·∇�h) ·

(
��h

�t
+uh ·∇�h

)
d�=0 (56)

For the time integration, again the Crank–Nicholson scheme is used, see Section 4.2. A partitioned,
strongly coupled algorithm is used for the solution of the Navier–Stokes equations (40)–(43) and
the advection equation (56).
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An important issue in the level-set method is the reinitialization of the level-set function after
regular time-intervals (often in each time step). This is necessary because otherwise the level-
set function becomes increasingly steep in local regions leading to unphysical results such as
oscillations, e.g. [59]. Furthermore, the distance property of the level-set function is no longer
maintained after the transport. Thus, a reinitialization of the level-set function has the aim to
maintain the distance property and avoid prohibitively large gradients. Several techniques are given
in the literature, see e.g. [59–61].

The reinitialization in this work is realized by taking the transported, discretized values of the
level-set function in the new time step, �h

n+1(xi ), i ∈ I , and determining explicitly the intersections
of the zero-level with the element edges. Then, for each node in I , the smallest distance to the
intersection points is determined, which leads to the reinitialized level-set function �̃h

n+1(xi ). It
is noted that this reinitialization does not change the position of the interface but only values of
the level-set function. We find that in the two-dimensional examples considered in this work, this
ad hoc approach gives satisfactory results in reasonable time (the reinitialization costs less than
1% of the overall computation time).

4.6. Surface tension

The surface tension term in Equation (43) involves the curvature � of the interface �±. For
interfaces defined by the level-set function �(x, t) with ‖�‖=1, which holds for the signed-distance
function used herein, the curvature may be computed as �=��=∇ ·∇�. However, it is shown in
Appendix A, that the situation is delicate for reinitialized level-set functions, and that � computed
by the reinitialized level-set function is often not useful. Therefore, it is desirable, to reformulate the
surface tension term in Equation (43) by means of the Laplace–Beltrami operator, see e.g. [16, 39],∫

�±
��wh ·n̂d�=−

∫
�±

�∇ id :∇wh d�+boundary terms (57)

where ∇ f =∇ f −(∇ f · n̂)n̂, and id is an identity mapping on the interface. The important advan-
tage of this formulation is that the curvature � is not needed. The boundary terms are only present
for open interfaces, i.e. those which cut the boundary � of the domain �. For the description of
the boundary terms, we reduce ourselves to two-dimensional domains �: Then, an open interface
�± is assumed to cut the boundary at P1 and P2, see Figure 12(a), and the boundary terms are

�[wh · t̂]P2P1 =�[wh(P2) · t̂(P2)−wh(P1) · t̂(P1)] (58)

with t̂ being the tangent vector on �±.
Furthermore, as shown in Appendix B, the situation simplifies drastically for polygonal inter-

faces, which means the interface consists of straight line segments. Assume an open polygon with
n points B1, . . . , Bn , with B1= P1 and Bn = P2. There are n−1 corresponding segments si between
Bi and Bi+1, i=1, . . . ,n−1, with a constant tangent vector t̂i in each segment, see Figure 12(b).
The surface tension integral over the interface can then be replaced by the following summation:∫

�±
��wh ·n̂d� = −�

n−1∑
i=1

t̂i [wh]Bi+1
Bi

+�[wh · t̂]P2P1 (59)

= �
n−1∑
i=2

wh(Bi )(t̂i − t̂i−1) (60)
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Figure 12. (a) Example of an open interface �± with intersection points P1 and P2 with the domain
boundary �, (b) and (c) show examples of an open and closed polygonal interface, respectively.

see Appendix B for the proof. For a closed polygon with n points B1, . . . , Bn and n segments
s1, . . . ,sn , where the last segment sn is between Bn and B1, see Figure 12(c), the situation is similar

∮
�±

��wh ·n̂d� = −�
n∑

i=1
t̂i [wh]Bi+1

Bi
(61)

= �
n∑

i=1
wh(Bi )(t̂i − t̂i−1) (62)

where Bn+1= B1 and t̂0= t̂n .

5. NUMERICAL RESULTS

Throughout this paper, we restrict ourselves to two-dimensional domains and bi-linear finite
elements. However, a generalization to three dimensions and different elements is possible and from
a mathematical point of view is straightforward. Concerning the extension to three dimensions,
it is mentioned that from an implementational point of view, the decomposition of the elements
into QFEM and QMLS (Section 3.1), the construction of MLS shape functions (Section 3.2), and
the coupling of the shape functions (Section 3.3) are easily parallelized. It remains to be shown
how the intrinsic XFEM in three dimensions performs in the context of iterative solvers.

The test cases considered here include tank sloshing, a collapsing water column, and bubble
flows and various Eötvös numbers. The results of the intrinsic XFEM are compared with those
obtained by the classical FEM and the standard XFEM. The approximation of two-fluid flows by
means of the classical FEM has been realized successfully in a number of different ways. For
example, front tracking methods adjust the underlying mesh by following the moving interface.
Front-capturing methods describe the interface implicitly (e.g. with the level-set method) and often
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refine the mesh near the interface. Both approaches can be employed in the classical FEM context
and rely, for optimal performance, on suitable manipulations of the mesh.

Some of the classical FEM results discussed in this work are obtained by a front-capturing
method on the same fixed mesh which is also used for the corresponding XFEM computation. As
a consequence, the improvement in the results for the intrinsic XFEM can be directly traced back
to the capability to capture the strong and/or weak discontinuities in the velocity and pressure
fields appropriately, which is in contrast to the classical FEM. For these classical FEM results, the
integration over the cut elements is realized as discussed in Section 4.4 for the intrinsic XFEM. The
corresponding material properties are assigned at the integration points. Thereby, no integration
error is introduced as would be the case when using standard Gauss integration in the cut elements.
The performance of this classical FEM is then directly related to its approximation properties.

5.1. Patch test for two-fluid flows

In order to demonstrate the features of the intrinsic XFEM applied to two-fluid flows we start
with considering two situations where the exact solution can be found with the enriched shape
functions. The first situation involves a weak discontinuity in the pressure field, the second a strong
discontinuity. Only the stationary Navier–Stokes equations are considered, and the velocity fields
are zero in both cases.

5.1.1. Patch test 1: weak discontinuity in the pressure field. Assume a rectangular domain �=
(0, x�)×(0, y�), where two different fluids are separated by a horizontal interface �± at height h�

which cuts directly through the elements, see Figure 13(a) for a sketch of the situation. Gravitation
is acting as a volume force fy =−g. The level-set function is negative in the lower fluid �− and
positive in the upper �+. The viscosity of the fluids is identical, �=�− =�+. The density of the
lower fluid is larger than the upper, i.e. �−>�+. Then, the exact solution is stationary with u(x)=0
and the pressure consists of only the hydrostatic pressure, see Figure 13(b),

p(x)=
{

�+ ·g ·(y�− y) ∀x∈�+

�+ ·g ·(y�−h�)+�− ·g ·(h�− y) ∀x∈�− (63)

The velocities are prescribed along the whole boundary of �, and p(x, y= y�)=0 along the upper
boundary of the domain.

The solution (63) can be found exactly when using the shape functions of the intrinsic XFEM
as proposed in Section 3, e.g. for the mesh shown in Figure 13(a). In contrast, this is not the case
for standard FEM computations because standard finite element shape functions are not able to
represent the inner-element kink in the exact solution. Anyway, acceptable solutions are obtained
for this test case also by standard FEM (e.g. by under-integration in the cut elements). It is
mentioned, that, obviously, for this specific test case it would not have been a problem to construct
a mesh with element edges aligning with the interface. Then, also the standard FEM would be
able to find the exact solution.

5.1.2. Patch test 2: strong discontinuity in the pressure field. A quadratic domain � has dimensions
(−x�, x�)×(−x�, x�). One fluid �− is inside a circle of radius r� around (0,0), see Figure 14(a).
The curvature on the interface has the constant value of �� =1/r�, and the surface tension coefficient
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Figure 13. (a) Problem statement and example mesh for the first fluid patch test,
(b) exact solution of the pressure.
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Figure 14. (a) Problem statement and example mesh for the second fluid patch
test, (b) exact solution of the pressure.

is ��. Density and viscosity of the two fluids are chosen identical, and no volume forces are present,
f=0. The exact solution of the velocities is u(x)=0 and the pressure is

p(x)=
{
0 ∀x∈�+

�� ·�� ∀x∈�− (64)

see Figure 14(b). The boundary conditions are prescribed as for the first patch test. Again, the
intrinsic XFEM is able to represent the exact solution (64) exactly without any element edges
aligning with the circular interface. In contrast, classical FEM computations for this type of problem
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are known to achieve poor accuracy due to the jump in the pressure field, see e.g. [16]. It is noted
that only in this test case, the exact level-set representation of the interface,

�(x)=‖x‖−r� (65)

has been used instead of its approximation �h(x).

5.2. Sloshing tank

A two-fluid flow in a sloshing tank is considered next. The setup of the test case follows the
description in [22]. The domain � is a container with height 1.5m and width 1.0m. The two fluids
in �− and �+ are separated by a sinusoidal interface

�± ={(x, y) : y=1.01+0.1 ·sin((x−0.5) ·�),0�x�1} (66)

see Figure 15(a). The density of the fluids in �− and �+ is �− =1000kg/m3 and �+ =1kg/m3,
respectively, and the viscosity is �− =1kg/s/m and �+ =0.01kg/s/m. No surface tension is consid-
ered here. A volume force (gravitation) of fy =−g=−1.0m/s2 is considered. Slip-conditions are
assumed along the walls of the tank, and p=0N/m2 is set along the upper boundary. The situation
is observed for t=(0,20s).

For the intrinsic XFEM, the domain is discretized by 20×30,40×60, and 80×120 elements.
The velocity and pressure approximations are abs-enriched according to Section 3.2.3. The results
are compared with those obtained by the standard FEM, where also a 160×240 element mesh is
used. The time step in the Crank–Nicholson scheme is chosen as �t=0.05s.

Firstly, we are interested in the area conservation of the two fluids. The domain �− has the area
A− =1.0×1.01=1.01m2. As both fluids are immiscible and incompressible, this area should be
conserved. However, it is well-known that the level-set method, in fact, does not conserve the area
exactly [14]. As well as the position of the interface is only an approximation of the real position,

Ω+

g

Ω

+Γ

y

x

1.
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1.
01

1.0
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t=0.6s t=1.2s
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Figure 15. (a) Problem statement for the sloshing tank test case, (b) position of the interface
and pressure field at different times.
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Figure 16. (a) and (b) show the change in the area A− after t=20s for the intrinsic XFEM and classical
FEM, respectively. Note the different scaling of the y-axis.

this also holds for the area A−. Figure 16(a) and (b) show the development of the area of domain
�− over time for the intrinsic XFEM and classical FEM (with interface-capturing and a fixed
mesh). For both methods, the area conservation clearly improves with mesh refinement. However,
a dramatic difference can be observed between the performance of the intrinsic XFEM and the
standard FEM: The intrinsic XFEM maintains about 97% of the area A− (after 20s) already on
the rough 20×30 mesh, whereas the classical FEM only maintains about 90% of the area even on
the fine 160×240 mesh. Clearly, the performance of the classical FEM would lead to results of
similar quality than those obtained by the intrinsic XFEM once the mesh is manipulated during the
computation, e.g. with a front-tracking scheme [3]. The aim here is to show that for fixed meshed,
enriched meshes improve the accuracy significantly.

The position where the interface �± meets the left boundary is called height h�. This height is
depicted over time in Figure 17 for some of the meshes used. It can be seen that due to the viscous
damping the amplitude of the height decreases. The frequency of the oscillation is 0.279Hz. A clear
convergence to the solution given in [22] can be observed for the intrinsic XFEM. For the classical
FEM, only the solution on the (fixed) 160×240 mesh is shown, the lack of area conservation
overshadows the whole solution. It is mentioned again that an interface tracking algorithm would
also be well suited for this test case as there are no topological changes in the interface position
throughout the simulation. Then, the results would be of a similar quality than those obtained by
the intrinsic XFEM on a fixed mesh.

5.3. Collapsing water column

This test case considers a collapsing water column in a domain �=0.584m×0.45m, as described
e.g. in [22, 62, 63]. Experimental data are found in [64]. In the initial situation, the fluid in �−
is placed on the left-hand side as a water column with dimensions a×b=0.146m×0.292m, see
Figure 18(a) for a sketch of the situation. The rest of the domain belongs to �+ =�\�−. The fluid
properties are 
− =1000kg/m3, 
+ =1kg/m3, and �− =10−3 kg/s/m, �+ =10−5 kg/s/m. No
surface tension is considered, and a volume force (gravitation) is chosen as fy =−g=−9.81m/s2.
Slip-conditions are assumed along the boundaries of the domain, and p=0N/m2 is set at the
upper boundary. The situation is observed for t=(0,0.3s) with �t=3×10−4. See Figure 19 for
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Figure 17. Interface position h� at the left wall of the tank for different meshes.
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Figure 18. (a) Problem statement for the collapsing water column test case, (b) and (c) show
experimental data by Martin and Moyce [64].

Figure 19. Interface position and pressure field at some selected points in time for the
collapsing water column test case.
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Figure 20. Dimensionless displacements over time for the collapsing water column test case.

interface positions and pressure fields at some selected points in time. The meshes used have
29×22 and 119×91 elements.

In Figure 20, we use the dimensionless times

�
 = t
√
2g/a, �� = t

√
2g/b (67)

and displacements


= x�/a, �= y�/b (68)

for displaying the results of the collapsing water column test case. The variables x�(t) and y�(t) are
the intersection points of the interface �± with the bottom and left wall of the domain, respectively.
Clearly, x�(t=0)=a and y�(t=0)=b.

The solution of the intrinsic XFEM is compared with reference solutions given in [22, 62, 63],
see Figure 20. In [22], the standard XFEM is used with space–time finite elements. Reference [62]
uses an implicit description by the volume-of-fluid approach, see e.g. [4]. A front-tracking method
is employed in [63]. An excellent agreement of the results obtained by the different approaches is
found. Again, only the classical FEM on a fixed mesh gives unsatisfactory results.

5.4. Rising bubble

Bubble flows at different Eötvös numbers are considered next, experimental data are found e.g. in
[65]. The external forces, densities, and viscosities are kept constant for all bubble flows. Only
the diameter d of the circular bubble is changed; the bubble area is denoted by �−. The domain
� depends on the bubble diameter and is given as �=2d×4d , see Figure 21(a). The fluid
properties are 
− =1kg/m3, 
+ =1000kg/m3, and �− =10−3.5 kg/s/m, �+ =10−1.5 kg/s/m. The
surface tension coefficient is �=10−3 kg/s2, and gravitational forces are fy =−g=−0.01m/s2.
The Morton number is

Mo= g ·(�+)4 ·(
+−
−)

(
+)2 ·�3 =0.01 (69)
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Figure 21. (a) Problem statement for the rising bubble test case, (b)–(e) show results at different Eötvös
numbers, Eo={1,10,100,1000}, respectively.

for all examples considered here. Four different diameters are chosen as d={0.01,10−1.5,
0.1,10−0.5m}, and with

Eo= g ·(
+−
−) ·d2
�

(70)
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Figure 22. Comparison of the interface positions obtained by the intrinsic XFEM and standard XFEM
[22] (dashed white lines) for different Eötvös numbers: (a) Eo=1; (b) Eo=10; and (c) Eo=1000.

four Eötvös numbers Eo={1,10,100,1000} result. Slip-conditions are assumed along the bound-
aries of the domain, and p=0N/m2 is set at the upper boundary. The situation is observed in
different time frames tend={15s,12.5s,20s,25s}, depending on the diameter of the bubble, or, in
other words, on the Eötvös number. For each case, 1000 time steps are used. The spatial resolution
is 80×160 elements. Figure 21 shows results of the bubble flows at selected points in time. For
low Eötvös numbers, surface tension effects dominate the problem and stabilize the bubble. In
contrast, for high Eötvös numbers, the surface tension is negligible and the form of the bubble is
characterized by the external forces, densities and viscosities.

In Figure 22, the results of the intrinsic XFEM are compared with those obtained by a standard
XFEM procedure with space–time finite elements [22]. It can be seen that the form of the bubble
coincides in both methods and also agrees well with experimental results for the bubble form as
given e.g. in [65]. There is a small difference in the interface positions as a result of the limited
mesh resolution and the different time integration schemes used.

6. CONCLUSION

The intrinsic XFEM is applied for the simulation of two-fluid flows. The approximation space
used in the intrinsic XFEM is able to represent inner-element jumps and kinks exactly. This
approximation space is built by standard finite element shape functions in the majority of the domain
and special enriched moving least-squares functions in the vicinity of the interface. Inbetween
the FE and MLS regions, a coupling of the two classes of shape functions is realized. Most
importantly, the resulting approximation in the intrinsic XFEM has the same number of unknowns
as a classical FE approximation. The computational work for the evaluation of the MLS shape
functions is increased, however, these functions are only needed locally near the interface.
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The interfaces in the proposed method are described implicitly by the level-set method. This
method provides a natural way to consider the movement of the interfaces by a transport equation.
The enrichment of the shape functions is directly based on the level-set function. Time integration
is realized by time-stepping schemes with satisfactory accuracy although they do not fully consider
the time-dependency of the shape functions. Therefore, space–time finite elements in the context
of the intrinsic XFEM are one possible extension of the proposed method. Special issues in the
XFEM in general are the treatment of essential boundary conditions and the integration of the
weak form. Surface tension effects are considered by means of the Laplace–Beltrami operator and
a simplification which is valid for polygonal interfaces; this can be also applied analogously in
classical finite element simulations.

The numerical results illustrate the capability of the intrinsic XFEM to represent jumps and kinks
exactly. Standard test cases are considered such as the simulation of tank-sloshing, a collapsing
water column and bubble flows at different Eötvös numbers. Excellent results are obtained which
are in very good agreement with results obtained by the standard XFEM and finite element results
in the context of interface tracking methods. We believe that the intrinsic XFEM is a good solution
for the simulation of two-fluid flow problems on fixed meshes.

APPENDIX A

We show that the explicit determination of the curvature � by means of the level-set function,
�=��(x), performs poorly for reinitialized level-set functions. For simplicity, a stationary level-set
function

�(x)=‖x‖−r, r ∈R (A1)

is considered (in two dimensions), where ‖·‖ is the Euclidean norm. The exact level-set function
(A1) defines a circular interface with radius r around x=0. The curvature �(x) follows as

�(x)=��(x)=1/‖x‖ (A2)

The procedure for determining the reinitialized level-set function �̃ is as follows: In a first step,
discrete points x̃ j , j =1, . . . , ñ, are determined along the interface, clearly, �(x̃ j )=0. For example,
x̃ j are the intersection points of the interface with element edges.

For each point x in the domain, the shortest distance to all points x̃ j , j =1, . . . , ñ, is determined.
Then, the reinitialized level-set function is defined as

�̃(x, x̃ j )=±min‖x− x̃ j‖ ∀ j =1, . . . , ñ (A3)

where the sign depends on which side of the polygon through x̃ j the point x lies. For the definition of
the curvature, an alternative definition of �̃(x, x̃ j ) is useful. Consider a Voronoi diagram depending
on the points x̃ j . The Voronoi-cell of node x̃k is denoted by Vk and for all x∈Vk , x̃k is the nearest
node. Consequently,

�̃(x, x̃ j )=±‖x− x̃k‖ ∀x∈Vk, k=1, . . . , ñ (A4)

The curvature of the reinitialized level-set function is

�̃(x, x̃ j )=± 1

‖x− x̃k‖ ∀x∈Vk, k=1, . . . , ñ (A5)
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Figure A1(a) and (b) show the level-set function � and curvature �, respectively. Depending on
the nodes x̃ j , j =1, . . . , ñ, Figure A1(c) and (d) show the resulting reinitialized level-set function
�̃(x) and curvature �̃(x). For an increasing number of nodes x̃ j on the circular interface, � and �̃
look more and more identical. However, this is not true for the curvature. The following differences

Figure A1. (a) and (b) show the level-set function �(x) and curvature �(x). (c) and (d) show
the reinitialized level-set function �̃(x) and curvature of reinitialized level-set function

�̃(x) for different nodes x j , j =1, . . . , ñ.
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in the curvatures � and �̃ are found:

• The curvature �̃ is singular at each node x̃ j , j =1, . . . , ñ, whereas � is smooth on the interface.
• The curvature �̃ inside the circle of radius r has the opposite sign as the curvature � (�̃ is

concave with respect to 0, whereas � is convex). Therefore, �̃ is discontinuous across the
interface, whereas � has the same sign on both sides.

• Away from the interface, the curvature �̃ has kinks along the edges of the Voronoi diagram,
i.e. it is C0-continuous there. In contrast, � is C∞-continuous except at x=0.

These aspects have important consequences for the computation of the curvature on discrete
meshes. Assume that

�h(x)=∑
i∈I

NFEM
i (x)�i (A6)

with �i =�(xi ) from Equation (A1) is the discrete level-set function. Analogously, �̃
h
(x, x̃ j ) is

defined as the discrete reinitialized level-set function with x̃ j being the intersection points of the
interface with element edges. The curvature �h of �h(x) is determined by simple finite differences

�h = �2�h

�x2
+ �2�h

�x2
(A7)

= 1/h2 ·[�h(xi−1, yi )−2 ·�h(xi , yi )+�h(xi+1, yi )] (A8)

+1/h2 ·[�h(xi , yi−1)−2 ·�h(xi , yi )+�h(xi , yi+1)] (A9)

and �̃h is determined in the same way depending on �̃
h
(x, x̃ j ). Results for �h and �̃h are shown

in Figure A2(a) and (b) on a regular 55×55 mesh. It may be seen that �̃h is dramatically different
from �h and dominated by severe oscillations. Other computations of �̃h , e.g. by means of finite
elements, lead to similar results. Therefore, in this work we avoid the explicit computation of the
curvature by means of the level-set function and proceed as in Appendix B. It is mentioned that the
explicit computation of the curvature has been realized by a special smoothing procedure in [66].

Figure A2. Curvature obtained by finite differences on a regular 55×55 mesh. (a) and (b) show �h(x)

and �̃h(x), respectively, computed by means of �h(x) and �̃
h
(x).
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APPENDIX B

Surface tension is modeled with the interface integral∫
�±

��wh ·n̂d� (B1)

see Equation (43). In this work, the interface consists in an open or closed polygon as shown in
Figure 12(b) and (c). It is now shown how the surface tension integral can be evaluated without
an explicit computation of the curvature �(x). For explicit computations of �, the interested reader
is referred to [67, 68] and references given therein.

Assume three points B1, B2, B3 which define an open polygon �± consisting of two straight
lines s1= B1B2 and s2= B2B3 as e.g. shown in Figure B1. Each of the two lines has a constant
normal vector n̂i and tangent vector t̂i , i=1,2. The angle between the two lines is denoted by �.
The curvature � is zero along the straight lines, however, at the edge, � has a ‘peak’ similar
to a Dirac-
 function. The contribution of � in the integral (B1) is defined in the framework of
distributions [69]. As a consequence, the integral is neither zero nor infinite.

In order to evaluate the integral (B1) for this particular choice of �±, the kink between the two
lines is smoothed in the following way. A parameter � is introduced, which defines the two points

C1= B2−�· t̂1 and C2= B2+�· t̂2 (B2)

The segment of the circle �c starts at C1 and ends at C2 and its radius is given as

r = tan
�

2
·� (B3)

B3

B1

s1
s2

n 1
^

t2
^

n
2
^

tc
^

nc
^

ε
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t 1
^

r

α

Figure B1. Sketch of the situation used for the proof.
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The normal and tangent vector on the segment of the circle is called n̂c and t̂c. The curvature of
the circle is constant �c=±1/r , where the sign is positive for counter-clockwise integrations, and
negative for clockwise integrations (as in Figure B1). It is noted that t̂c(C1)= t̂1 and t̂c(C2)= t̂2.
From differential geometry [70], we have∫

�c

�c ·n̂c d� = t̂c(C2)− t̂c(C1) (B4)

= t̂2− t̂1 (B5)

It is interesting that although the segment of the circle �c and the curvature �c depend on �, the
integral is, in fact, independent on �. Let us now evaluate (B1) along the smoothed interface �±

c
between B1 and B3. Firstly, ∫

�±
c

��wh ·n̂d�=
∫

�c

��cwh ·n̂c d� (B6)

because the linear segments B1C1 and C2B3 have zero-curvature and, therefore, no influence in
the integral. Furthermore, with (B6) and �−→0, it follows that∫

�c

��cwh ·n̂c d� �→0−→�wh(B2) ·(t̂2− t̂1)=
∫

�±
��wh ·n̂d� (B7)

It is noted that the same result can be obtained by evaluating the right-hand side of (57) for this
situation, i.e.

−
∫

�±
�∇ id :∇wh d�+�[wh · t̂]B3B1 (B8)

=−
∫
s1

�∇ id :∇wh d�−
∫
s2

�∇ id :∇wh d�+�[wh · t̂]B3B1 (B9)

Therefore, the special situation of one straight line s between P1 and P2 is considered. In this
case, �=0, and from (57) follows immediately∫

s
�∇ id :∇wh d�=�[wh · t̂]P2P1 (B10)

Consequently, for Equation (B9) follows:

−�[wh · t̂]B2B1 −�[wh · t̂]B3B2 +�[wh · t̂]B3B1 (B11)

=−�[wh(B2) · t̂1−wh(B1) · t̂1]−�[wh(B3) · t̂2−wh(B2) · t̂2] (B12)

+�[wh(B3) · t̂2−wh(B1) · t̂1] (B13)

=�wh(B2) ·(t̂2− t̂1) (B14)

This is the same result than obtained in Equation (B7). The situation is generalized straightforward
for polygonal interfaces with more than two segments. The resulting expressions are given in
Section 4.6.
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18. Belytschko T, Moës N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for

Numerical Methods in Engineering 2001; 50:993–1013.
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